彌補(bǔ)傳統(tǒng)數(shù)值模式的不足
代刊告訴記者,傳統(tǒng)天氣預(yù)報(bào)不斷發(fā)展更加復(fù)雜的動(dòng)力數(shù)值模式,以求更準(zhǔn)確和提前預(yù)報(bào)天氣,人工智能預(yù)報(bào)天氣則是以大數(shù)據(jù)驅(qū)動(dòng)為主的預(yù)報(bào)技術(shù),“實(shí)際上這兩種方式是解決不同的問(wèn)題,即不斷發(fā)展的數(shù)值模式系統(tǒng)提供更高分辨率、更準(zhǔn)確的預(yù)報(bào)結(jié)果,但由于其自身的缺陷以及天氣預(yù)報(bào)的不確定性,仍然不能滿足各種用戶的不同需求,數(shù)據(jù)驅(qū)動(dòng)方法為彌補(bǔ)這一差距提供了非常有用的工具。”代刊表示。
在我國(guó),近年來(lái)隨著天氣業(yè)務(wù)現(xiàn)代化建設(shè)的推進(jìn),AI技術(shù)也得到逐步應(yīng)用。據(jù)代刊介紹,在國(guó)家氣象中心,研究人員已經(jīng)將數(shù)據(jù)挖掘技術(shù)應(yīng)用于海量集合預(yù)報(bào)數(shù)據(jù)的預(yù)報(bào)信息提取,如發(fā)展的最優(yōu)百分位技術(shù)和臺(tái)風(fēng)路徑最優(yōu)選取集成方法,對(duì)提高預(yù)報(bào)準(zhǔn)確率起到顯著效果。
“我們正在探索將人工智能技術(shù)應(yīng)用于網(wǎng)格預(yù)報(bào)業(yè)務(wù),通過(guò)與清華大學(xué)合作,采用分布式深度學(xué)習(xí)框架、時(shí)空記憶深度循環(huán)網(wǎng)絡(luò)算法,雷達(dá)外推預(yù)報(bào)準(zhǔn)確率較之以往平均提升40%。”代刊說(shuō)。
在公共氣象服務(wù)中心,研究者聯(lián)合天津大學(xué)共同研發(fā)了全國(guó)強(qiáng)對(duì)流服務(wù)產(chǎn)品加工系統(tǒng)。該系統(tǒng)運(yùn)用圖像識(shí)別和深度學(xué)習(xí)等新技術(shù),能夠快速和智能化地監(jiān)測(cè)預(yù)警強(qiáng)對(duì)流天氣,可以判斷出未來(lái)30分鐘內(nèi)強(qiáng)對(duì)流天氣發(fā)生和影響的區(qū)域,預(yù)測(cè)產(chǎn)品的區(qū)域空間分辨率為1公里,每6分鐘滾動(dòng)更新。
除了國(guó)家氣象臺(tái),各省級(jí)氣象臺(tái)也都已開展相關(guān)研究,“人工智能這么火,我們肯定希望早把它用在我們的專業(yè)上,不用新技術(shù)就落伍了。”錢奇峰笑說(shuō)。目前,廣東省氣象局利用阿里平臺(tái)開展的基于深度學(xué)習(xí)的短臨降水預(yù)報(bào)效果良好;北京市氣象局也將機(jī)器學(xué)習(xí)方法應(yīng)用于溫度預(yù)報(bào);福建省氣象局基于機(jī)器學(xué)習(xí)的降水要素的客觀訂正方法已在多個(gè)省氣象局得到業(yè)務(wù)推廣應(yīng)用。
